Proofs

Ὅσα τὰ αὐτὰ τῷ αὐτῷ ἴσα, καὶ ἀλλήλοις ἐστὶν ἴσα.
“Things equal to the same thing are equal to one another.”
— Euclid, Στοιχεῖα (Elements), Common Notion I
Let 𝑀 be the set of mathematical ideas (proofs, lemmas, theorems).
∀t ≥ 0:  I(t) ∈ Learners ∧ Love(ℳath) = ⊤ ∧ Ambition(I) ≠ “claim-to-mastery”.
Purpose:  maximize Growth(I,t)  subject to  Ethics ∧ Clarity ∧ Rigor.
Method:  Write(I, proofs) ⇒ (Practice ↑) ∧ (Insight ↑) ∧ (Error → Lesson).
Therefore:  lim t→∞ Skill(I,t) ↑,  while  Humility(I,t) ≥ constant > 0.

Irrationality of √2

Four distinct proofs

Proof of Cauchy–Schwarz Inequality

A classical algebraic argument

Bézout’s Identity

Euclid algorithm ⇒ ax + by = gcd(a,b)

Infinitude of Primes

Euclid’s classic contradiction proof

AM–GM Inequality (Two Variables)

(a+b)/2 ≥ √(ab)

Sum of First n Odd Numbers

1+3+…+(2n−1) = n²

Fermat’s Little Theorem

a^(p−1) ≡ 1 (mod p)

Handshaking Lemma

∑ deg(v) = 2E